Discussione:
Perchè è maggiore di alfa?
(troppo vecchio per rispondere)
pino mugo
2020-11-20 18:10:13 UTC
Permalink
Successione positiva : breve dimostrazione che il limite inferiore della radice n-ma del termine è >= del limite inferiore del rapporto dei termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL LIM INF della radice ennesima è > di alfa" .

Qui la foto della paginetta con la presunta dimostrazione.

https://ufile.io/xz0lbvm7

Grazie
Vitto' sei fesso
2020-11-20 22:44:42 UTC
Permalink
Post by pino mugo
Successione positiva : breve dimostrazione che il limite inferiore della
radice n-ma del termine è >= del limite inferiore del rapporto dei
termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL LIM
INF della radice ennesima è > di alfa" .
Qui la foto della paginetta con la presunta dimostrazione.
https://ufile.io/xz0lbvm7
Grazie
Vitto' sei fesso
--
Vitto' sei fesso
john carpenter
2020-11-22 23:05:22 UTC
Permalink
Post by pino mugo
Successione positiva : breve dimostrazione che il limite inferiore della radice n-ma del termine è >= del limite inferiore del rapporto dei termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL LIM INF della radice ennesima è > di alfa" .
Qui la foto della paginetta con la presunta dimostrazione.
https://ufile.io/xz0lbvm7
Grazie
dunque , hai :

A > alfa*k
passando al limite per n---> infinito , alfa rimane alfa, ma k tende a 1 , quindi hai:
liminf A > alfa*1= alfa
Bard
2020-11-23 10:42:50 UTC
Permalink
Post by john carpenter
Post by pino mugo
Successione positiva : breve dimostrazione che il limite inferiore della radice n-ma del termine è >= del limite inferiore del rapporto dei termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL LIM INF della radice ennesima è > di alfa" .
Qui la foto della paginetta con la presunta dimostrazione.
https://ufile.io/xz0lbvm7
Grazie
A > alfa*k
liminf A > alfa*1= alfa
Vitto sei fesso
--
----Android NewsGroup Reader----
http://usenet.sinaapp.com/
pino mugo
2020-11-23 20:03:00 UTC
Permalink
Post by Bard
Post by john carpenter
Successione positiva : breve dimostrazione che il limite inferiore della radice n-ma del termine č >= del limite inferiore del rapporto dei termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL LIM INF della radice ennesima č > di alfa" .
Qui la foto della paginetta con la presunta dimostrazione.
https://ufile.io/xz0lbvm7
Grazie
A > alfa*k
liminf A > alfa*1= alfa
Vitto sei fesso
ma no dai, vitto' che capisce qualcosa di matematica??
frattale
2020-11-24 09:11:18 UTC
Permalink
Post by pino mugo
Post by Bard
Il giorno venerdě 20 novembre 2020 alle 19:10:15 UTC+1
Post by pino mugo
Successione positiva : breve dimostrazione che il limite inferiore
della radice n-ma del termine č >= del limite inferiore del rapporto
dei termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL
LIM INF della radice ennesima č > di alfa" .
Qui la foto della paginetta con la presunta dimostrazione.
https://ufile.io/xz0lbvm7
Grazie
A > alfa*k passando al limite per n---> infinito , alfa rimane alfa,
ma k tende a 1 , quindi hai: liminf A > alfa*1= alfa
Vitto sei fesso
ma no dai, vitto' che capisce qualcosa di matematica??
Quello si intende solo di maschi, ne cerca in continuazione.
Bard
2020-11-24 11:30:14 UTC
Permalink
Post by frattale
Post by pino mugo
Post by Bard
Il giorno venerd? 20 novembre 2020 alle 19:10:15 UTC+1
Post by pino mugo
Successione positiva : breve dimostrazione che il limite inferiore
della radice n-ma del termine ? >= del limite inferiore del rapporto
dei termini.
Ma nell'ultima riga non capisco come faccia ad affermare che " IL
LIM INF della radice ennesima ? > di alfa" .
Qui la foto della paginetta con la presunta dimostrazione.
https://ufile.io/xz0lbvm7
Grazie
A > alfa*k passando al limite per n---> infinito , alfa rimane alfa,
ma k tende a 1 , quindi hai: liminf A > alfa*1= alfa
Vitto sei fesso
ma no dai, vitto' che capisce qualcosa di matematica??
Quello si intende solo di maschi, ne cerca in continuazione.
Vitto', sei Fesso !
--
----Android NewsGroup Reader----
http://usenet.sinaapp.com/
Continua a leggere su narkive:
Loading...